Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 102(2): 151314, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058825

RESUMO

The small GTPase Ras is frequently mutated in cancer and a driver of tumorigenesis. The recent years have shown great progress in drug-targeting Ras and understanding how it operates on the plasma membrane. We now know that Ras is non-randomly organized into proteo-lipid complexes on the membrane, called nanoclusters. Nanoclusters contain only a few Ras proteins and are necessary for the recruitment of downstream effectors, such as Raf. If tagged with fluorescent proteins, the dense packing of Ras in nanoclusters can be analyzed by Förster/ fluorescence resonance energy transfer (FRET). Loss of FRET can therefore report on decreased nanoclustering and any process upstream of it, such as Ras lipid modifications and correct trafficking. Thus, cellular FRET screens employing Ras-derived fluorescence biosensors are potentially powerful tools to discover chemical or genetic modulators of functional Ras membrane organization. Here we implement fluorescence anisotropy-based homo-FRET measurements of Ras-derived constructs labelled with only one fluorescent protein on a confocal microscope and a fluorescence plate reader. We show that homo-FRET of both H-Ras- and K-Ras-derived constructs can sensitively report on Ras-lipidation and -trafficking inhibitors, as well as on genetic perturbations of proteins regulating membrane anchorage. By exploiting the switch I/II-binding Ras-dimerizing compound BI-2852, this assay is also suitable to report on the engagement of the K-Ras switch II pocket by small molecules such as AMG 510. Given that homo-FRET only requires one fluorescent protein tagged Ras construct, this approach has significant advantages to create Ras-nanoclustering FRET-biosensor reporter cell lines, as compared to the more common hetero-FRET approaches.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Linhagem Celular , Polarização de Fluorescência , Lipídeos
2.
Appl Microbiol Biotechnol ; 93(6): 2377-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21881892

RESUMO

Cis-epoxysuccinate hydrolase (CESH, EC 3.3.2.3) from Nocardia tartaricans is known to catalyze the opening of an epoxide ring of cis-epoxysuccinate (CES), thereby converting it to corresponding vicinal diol, L(+)-tartaric acid. An attempt has been made to build a 3D homology model of CESH to investigate the structure-function relationship, and also to understand the mechanism of the enzymatic reaction. Using a combination of molecular-docking simulation and multiple sequence alignment, a set of putative residues that are involved in the CESH catalysis has been identified. Functional roles of these putative active-site residues were further evaluated by site-directed mutagenesis. Interestingly, the mutants D18A, D18E, Q20E, T22A, R55E, N134D, K164A, H190A, H190N, H190Q, D193A, and D193E resulted in complete loss of activity, whereas the mutants Y58F, T133A, S189A, and Y192D retained partial enzyme activity. Furthermore, the active-site residues responsible for the opening of CES were analyzed, and the mechanism underlying the catalytic triad involved in L(+)-tartaric acid biosynthesis was proposed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrolases/química , Hidrolases/genética , Nocardia/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Hidrolases/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nocardia/química , Nocardia/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...